Explore Machine Learning Models with Explainable AI: Challenge Lab
model = Sequential()
model.add(layers.Dense(200, input_shape=(input_size,), activation='relu'))
model.add(layers.Dense(50, activation='relu'))
model.add(layers.Dense(20, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
model.fit(train_data, train_labels, epochs=10, batch_size=2048, validation_split=0.1)
limited_model = Sequential()
limited_model.add(layers.Dense(200, input_shape=(input_size,), activation='relu'))
limited_model.add(layers.Dense(50, activation='relu'))
limited_model.add(layers.Dense(20, activation='relu'))
limited_model.add(layers.Dense(1, activation='sigmoid'))
limited_model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
limited_model.fit(limited_train_data, limited_train_labels, epochs=10, batch_size=2048, validation_split=0.1)
# Fill out this information:
GCP_PROJECT = '# TODO'
MODEL_BUCKET = 'gs:// #TODO'
MODEL_NAME = 'complete_model' #do not modify
LIM_MODEL_NAME = 'limited_model' #do not modify
VERSION_NAME = 'v1'
REGION = 'us-central1'
!gcloud ai-platform models create $MODEL_NAME --regions $REGION
2. Now create a version. This will take a couple of minutes to deploy.
!gcloud ai-platform versions create $VERSION_NAME \
--model=$MODEL_NAME \
--framework='TENSORFLOW' \
--runtime-version=2.1 \
--origin=$MODEL_BUCKET/saved_model/my_model \
--staging-bucket=$MODEL_BUCKET \
--python-version=3.7
Create your second AI Platform model: limited_model
!gcloud ai-platform models create $LIM_MODEL_NAME --regions $REGION
!gcloud ai-platform versions create $VERSION_NAME \
--model=$LIM_MODEL_NAME \
--framework='TENSORFLOW' \
--runtime-version=2.1 \
--origin=$MODEL_BUCKET/saved_limited_model/my_limited_model \
--staging-bucket=$MODEL_BUCKET \
--python-version=3.7
WATCH VIDEO TO UNDERSTAND BETTER : https://youtu.be/UEYzVKqTKGE